Tetrahedron Letters,Vol.23,No.13,pp 1381-1384,1982 0040-4039/82/131381-04\$03.00/0 Printed in Great Britain ©1982 Pergamon Press Ltd.

PUMMERER-LIKE REACTION OF SULPHINAMIDES

Mauro Isola^{*}, Ennio Ciuffarin, Laura Sagramora and Carlo Niccolai Istituto di Chimica Generale, Via Risorgimento 35, 56100 Pisa, Italy

 $\underbrace{\underline{Summary}}_{\alpha-\text{carbon to nitrogen, with electrophilic reagents leads in some cases to formation of N-sulphenylimines (2), via a Pummerer-like reaction.$

The Pummerer rearrangement of sulphoxides with acetic anhydride and other electrophilic reagents is well known and extensively studied l

Other compounds of tricoordinate sulphur are reported to undergo Pummerer-type rearrangement, namely the alkoxysulphonium salts 2 and the N-p-tosylsulphilimines 3

Within the category of sulphinyl derivatives, secondary sulphinamides (1) bearing one hydrogen atom at α -carbon to nitrogen appear as promising compounds for this type of reaction. Despite this, no systematic studies have appeared in the literature and only o-nitrophenylsulphinyl derivatives of two 7- β -amino-cephalosporins have been mentioned⁴ to react with thionyl chloride and quinoline to give the corresponding N-sulphenylimines

In order to obtain new information pertaining to this reaction, we have investigated the reactivity of a variety of appropriate secondary sulphinamides towards electrophilic reagents

Treatment of sulphinamides $\underline{1a-e}^5$ with acetic anhydride at room temperature led to N-sulphenylimines $\underline{2a-e}^5$ and acetamides $\underline{3a-e}$ (eq 1) The results are shown in Table 1

ArS(0)NHCHRR' $\frac{Ac_2^0}{arsN=CRR' + AcNHCHRR'}$ (1) <u>1</u> <u>2a-e</u> <u>3a-e</u>

a,
$$Ar = 4-CH_3C_6H_4$$
, $R = R' = 4-C1C_6H_4$
b, $Ar = 4-CH_3C_6H_4$, $R = R' = C_6H_5$
c, $Ar = 4-CH_3C_6H_4$, $R = R' = C_6H_5$
d, $Ar = 4-CH_3C_6H_4$, $R = R' = 4-CH_3C_6H_4$
e, $Ar = 4-C1C_6H_4$, $R = R' = 4-C1C_6H_4$
f, $Ar = 4-CH_3C_6H_4$, $R, R' = -(CH_2)_5$
h, $Ar = 4-CH_3C_6H_4$, $R = H$, $R' = n-C_3H_7$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CH_3C_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CIC_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CIC_6H_4$, $R = R' = CH_3$
h, $Ar = 4-CIC_6H_4$, $R = H$, $R' = C_6H_5$

Sulphınamıde	Tıme,h	Products (yıelds %)	Ratıo <u>2/3</u>
<u>la</u>	45	<u>2a</u> (45), <u>3a</u> (26)	1 7
	70	<u>2a(48),3a(43)</u>	11
<u>1b</u>	45	<u>2b(23),3b(30)</u>	0 77
	70	<u>2b(32),3b(42)</u>	0 76
<u>lc</u>	45	<u>2c(10),3c(25)</u>	0 40
	70	<u>2c(14),3c(37)</u>	0 38
<u>ld</u>	45	<u>2d</u> (25), <u>3d</u> (35)	071
	70	<u>2d(33),3d(48)</u>	0 69
<u>le</u>	30	<u>2e(55),3e(25)</u>	22
	45	<u>2e(58),3e(38)</u>	15

Table I - Products of the reaction of sulphinamides with acetic anhydride^a

^aYıelds of ısolated compounds

Substitution of acetic anhydride for acetyl chloride and pyridine in diethyl ether did not appreciably affect the yields of 2a and 3a(49%) and 48%, respectively)

From the reaction mixture of <u>la-e</u> with acetic anhydride, p-tolyl p-toluenethiolsulphonate were identified by TLC and IR analysis. For <u>la</u>, p-toluenesulphonic acid was separated in the form of its acetamide <u>3a</u>-salt⁵ in addition to the major products <u>2a</u> and <u>3a</u>. These sulphur-containing compounds, often reported as final products in the disproportionation of sulphinyl derivatives,⁶ evidently arise from a complex process involving the sulphinyl movety of the sulphinamide.

The data in Table I, although obtained for a limited number of sulphinamides, indicate that the yields of N-sulphenylimines and the molar ratio $\frac{2}{3}$ increase with the electron-withdrawing power of the para-substituents on the aromatic rings. For <u>la</u> and <u>le</u>, longer reaction times significantly decrease the molar ratio $\frac{2}{3}$ This fact suggests the idea that one mechanistic pathway to acetamides involves acetic acid, whose production parallels that of the imines (eq 2), possibly via a protonation equilibrium of the sulphinamides.⁷

 $ArS(0)NHCHRR' + Ac_2 0 \longrightarrow ArSN=CRR' + 2 AcOH$ (2)

The fact that the reaction of the sulphinamides <u>la</u> or <u>le</u> with acetic anhydride in the presence of acetic acid produces only acetamide <u>3a</u> but no imines <u>2a</u> or 2e, respectively, supports this hypothesis

When the reaction was carried out, under identical experimental conditions,

with N-alkyl or N-benzylsulphinamides $(\underline{1f-1})^5$, we were not able to identify the corresponding N-sulphenylimines in the reaction mixture, the only identifiable products were disulphides and thiolsulphonates A control experiment, performed adding the sulphenimine $\underline{21}^8$ to a mixture of the sulphinamide $\underline{11}$ and acetic anhydride, revealed that the sulphur-nitrogen bond in the imine is cleaved under the reaction conditions. In fact, the recovered reaction mixture did not contain the starting imine but p-tolyl disulphide and p-tolyl p-toluenethiosulphonate Consequently, if a similar decomposition occurs with the other alkyl (or cycloalkyl) and benzyl imines, the lack of these products in the reaction mixture dides not necessarily reflect the inability to undergo the Pummerer-like reaction of the parent sulphinamides

Similar results were obtained when thionyl chloride in pyridine was used at 0°C as electrophilic agent again the N-sulphenylimines 2 were isolated only from reaction mixtures with sulphinamides <u>la-e</u> and in comparable yields with those obtained using acetic anhydride (Table II)

Table II - Products of the reaction of sulphinamides with thionyl chloride in pyridine^a

Sulphınamıde	Products (yıelds %)	
<u>la</u>	<u>2a</u> (55)	
<u>1 b</u>	<u>2b</u> (19)	
<u>lc</u>	<u>2c</u> (16)	
<u>1d</u>	<u>2d</u> (23)	
<u>le</u>	<u>2e</u> (64)	

^aYields of isolated compounds

The knowledge of the factors governing the formation of the N-sulphenylimines is also important from a preparative point of view. In fact, although these compounds appear to be synthetic intermediates of considerable interest,⁹ they have rarely been used in organic synthesis because of the lack of convenient preparative methods⁹⁻¹¹ This is especially true for the N-sulphenyldiarylimines such as $\frac{2a-e}{10}$, for which only one specific synthetic procedure is presently available¹⁰, while others failed¹¹ Thus, synthetic procedure based on the Pummerer-type reaction of sulphinamides may be considered a useful alternate route to these compounds.

This work was supported by C N R ,(Roma)

REFERENCES AND NOTES

- See for example T Durst in "Advances in Organic Chemistry", vol 6 Interscience, New York, N Y, 1969, p 356, J.G.Tillet, <u>Chem Rev</u>, 747 (1976), M MikoJajczyk, A Zatorski, S Grzejszczak, B Costisella and W Midura, <u>J Org</u> <u>Chem</u>, <u>43</u>,2518,(1978), T Masuda, T Numata, N Furukawa and S Oae, <u>J C S</u> Perkin II,1302(1978), S Wolfe and P M Kazmaier, Can. J Chem, <u>57</u>,2388(1979).
- 2 C R Johnson and W G Phillips, J Am Chem Soc ,91,682(1969)
- 3 N Furukawa, S Oae and T Masuda, <u>Chem & Ind</u> (London), 396(1975), N Furukawa, T Yoshimura and S Oae, Phosphorus Sulfur, 3, 277(1977)
- 4 T Kobayashi, K. Iino, T Hiraoka, J Am Chem Soc., 99, 5505(1977)
- 5 All new compounds were characterized by ^IH NMR, IR spectroscopy and elemental analysis
- 6 See, e g J L Kice and J P Cleveland, J Am Chem Soc ,95,109(1973), J L Kice and K W Bowers, J Am Chem Soc ,84,605(1962), M Kobayashi and A Yamamoto, Bull Chem Soc Japan,39,2733(1966)
- 7 Evidence for a rapid protonation equilibrium was found when the ¹H NMR spectrum of <u>lb</u> in deuteriochloroform was investigated in the presence of acetic acid the NH douplet at δ 4 74 coalesced into a single broad absorption and was shifted downfield, while the methine douplet at δ 5 67 collapsed to a singlet
- 8 Prepared according to the method described by Davis 12
- 9 E M Gordon and J Pluscec, <u>J Org Chem</u>, <u>44</u>, 1218(1979), E M Gordon, H W Chang, C M Cimarusti, B Toeplitz and J Z Gougoutos, J.Am Chem Soc, 102,1691(1980)
- 10 F A Davis and E W Kluger, J.Am Chem Soc ,98,302(1976)
- 11 F A Davis,W.A R.Slegeir, S Evans, A Schwartz, D L Goff and R Palmer,<u>J Org</u> Chem ,38,2809(1973)
- 12 F A Davis and E B Skibo, J Org Chem ,39,807(1974)

(Received in UK 26 January 1982)